16th Edition (reference only) – NOW superseded by the 17th Edition IEE Regulations.

chapter 5
Earthing

chapter 6
Circuits

Circuits
  6.1. - Basic requirements for circuits 6.4 - Industrial socket outlet circuits
  6.2 - Maximum demand and diversity 6.5 - Other circuits
  6.3 - BS1363 socket outlet circuits 6.6 - Circuit segregation


6.2.2 -  Diversity

A domestic ring circuit typically feeds a large number of 13 A sockets hut is usually protected by a fuse or circuit breaker rated at 30 A or 32 A. This means that if sockets were feeding 13 A loads, more than two of them in use at the same time would overload the circuit and it would be disconnected by its protective device.

In practice, the chances of all domestic ring sockets feeding loads taking 13 A is small. Whilst there maybe a 3 kW washing machine in the kitchen, a 3 kW heater in the living room and another in the bedroom, the chance of all three being in use at the same time is remote. If they are all connected at the same time, this could be seen as a failure of the designer when assessing the installation requirements; the installation should have two ring circuits to feed the parts of the house in question.

Most sockets, then, will feed smaller loads such as table lamps, vacuum cleaner, television or audio machines and so on. The chances of all the sockets being used simultaneously is remote in the extreme provided that the number of sockets (and ring circuits) installed is large enough. The condition that only a few sockets will be in use at the same time, and that the loads they feed will be small is called diversity.

By making allowance for reasonable diversity, the number of circuits and their rating can be reduced, with a consequent financial saving, but without reducing the effectiveness of the installation. However, if diversity is over-estimated, the normal current demands will exceed the ratings of the protective devices, which will disconnect the circuits - not a welcome prospect for the user of the installation! Overheating may also result from overloading which exceeds the rating of the protective device, but does not reach its operating current in a reasonably short time. The Regulations require that circuit design should prevent the occurrence of small overloads of long duration.

The sensible application of diversity to the design of an installation calls for experience and a detailed knowledge of the intended use of the installation. Future possible increase in load should also be taken into account. Diversity relies on a number of factors which can only be properly assessed in the light of detailed knowledge of the type of installation, the industrial process concerned where this applies, and the habits and practices of the users, Perhaps a glimpse into a crystal ball to foresee the future could also be useful!

 

Return to top of page

Extracted from The Electricians Guide Fifth Edition
by John Whitfield

Published by EPA Press Click Here to order your Copy.

Click here for list of abbreviations